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Abstract
The infinite series of logarithmic minimal modelsLM(1, p) is considered in the
W-extended picture where they are denoted by WLM(1, p). As in the rational
models, the fusion algebra ofWLM(1, p) is described by a simple graph fusion
algebra. The corresponding fusion matrices are mutually commuting, but in
general not diagonalizable. Nevertheless, they can be simultaneously brought
to Jordan form by a similarity transformation. The spectral decomposition
of the fusion matrices is completed by a set of refined similarity matrices
converting the fusion matrices into Jordan canonical form consisting of Jordan
blocks of rank 1, 2 or 3. The various similarity transformations and Jordan
forms are determined from the modular data. This gives rise to a generalized
Verlinde formula for the fusion matrices. Its relation to the partition functions
in the model is discussed in a general framework. By application of a particular
structure matrix and its Moore–Penrose inverse, this Verlinde formula reduces
to the generalized Verlinde formula for the associated Grothendieck ring.

PACS number: 11.25.Hf

1. Introduction

The fusion matrices of a standard rational conformal field theory are diagonalizable. This
is made manifest by the Verlinde formula [1, 2] where the diagonalizing similarity matrix is
the modular S-matrix of the characters in the theory. In a logarithmic conformal field theory,
on the other hand, there are typically more linearly independent representations than linearly
independent characters due to the presence of indecomposable representations of rank greater
than 1. Consequently, there is no Verlinde formula in the usual sense and the fusion matrices
may not all be diagonalizable. This is indeed the situation in the cases studied here, but
can be circumnavigated in some logarithmic models where a Verlinde formula is recovered
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when restricting to a subset of the spectrum of representations and their associated characters
[3]. Our results here present the first spectral decompositions of non-diagonalizable fusion
matrices. Spectral decompositions of the likewise non-diagonalizable matrix realizations of
the associated Grothendieck rings appear in [4], see below.

We consider the infinite series of logarithmic minimal models LM(1, p) [5] in the W-
extended picture [6] where they are denoted byWLM(1, p). The fusion rules [6–9] underlying
the commutative and associative fusion algebra of WLM(1, p) are generated from repeated
fusions of the two fundamental representations (2, 1)W and (1, 2)W . As in rational conformal
field theories [2], the fusion algebra is described by a simple graph fusion algebra. This is
neatly encoded in the graphs associated with the two fundamental fusion matrices, and we
exhibit these graphs explicitly.

There are 4p − 2 indecomposable representations in the model WLM(1, p). According
to [10], every associated fusion matrix can be written as a polynomial in the fundamental fusion
matrices N(2,1)W and N(1,2)W . We devise a similarity transformation in the form of a matrix
Q which converts these two fusion matrices simultaneously into Jordan canonical form. This
matrix Q is naturally described in terms of Chebyshev polynomials and derivatives thereof. It
is constructed by concatenating a complete set of generalized eigenvectors of N(1,2)W forming
Jordan chains of length 1 or 3.

Due to the polynomial constructions just mentioned, the remaining fusion matrices are
also brought to Jordan form by the similarity matrix Q, albeit typically non-canonical Jordan
forms. The similarity matrices converting them into canonical Jordan forms can be obtained
rather straightforwardly from Q. For every fusion matrix N , we thus provide this modified
Q-matrix QN as well as the corresponding Jordan canonical form of N . Only Jordan blocks
of rank 1, 2 or 3 appear in these Jordan canonical forms.

One can associate a logarithmic generalization of the Verlinde formula to the so-called
Grothendieck ring of WLM(1, p) [4, 9]. This formula yields matrix realizations of the
Grothendieck generators, of which there are 2p, in terms of the (generalized) S-matrix. The
Jordan forms of these matrices contain non-trivial Jordan blocks of rank 2, while the fusion
matrices of WLM(1, p) also give rise to Jordan blocks of rank 3, as already mentioned. We
also stress that there are almost twice as many representations (4p − 2) than Grothendieck
generators (2p), the latter number being equal to the number of linearly independent characters.
The coincidence of the Grothendieck ring with the fusion algebra in a standard conformal field
theory therefore fails to extend to the logarithmic conformal field theory WLM(1, p).

Another objective of the present work is to generalize the results of [4, 9] by expressing the
fusion matrices in terms of the modular data encoded in the generalized S-matrix. This yields a
Verlinde-type formula for the fusion matrices themselves and not just for the generators of the
associated Grothendieck ring. Other approaches to a Verlinde formula for the WLM(1, p)

models have been proposed in [11–13]. As discussed in [4], however, they do not seem to be
equivalent to the approach used in [4] which is adopted here.

Finally, we outline a general framework within which it makes sense to discuss rings of
equivalence classes of fusion-algebra generators. Specializing this to the equivalence classes
obtained by elevating the character identities of WLM(1, p) to equivalence relations between
the corresponding fusion generators, we recover the Grothendieck ring of WLM(1, p).
From the lattice description of WLM(1, p), the 4p − 2 indecomposable representations
mentioned above are naturally associated with boundary conditions. As already indicated,
the corresponding characters are not linearly independent, but we can nevertheless talk about
partition functions arising when combining two such boundary conditions. This provides a
direct relationship between the generalized Verlinde formulas for the fusion algebra and the
Grothendieck ring, respectively. The structure matrix, which governs the expansion of the
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reducible characters (of the rank-2 representations) in terms of the irreducible characters, can
subsequently be used to express the Grothendieck (Verlinde) matrices in terms of the fusion
(Verlinde) matrices. This explicit relation also involves the Moore–Penrose inverse of the
structure matrix.

A logarithmic minimal model LM(p, p′) is defined for every pair of relatively prime
integers 1 � p < p′ [5]. Its W-extended picture WLM(p, p′) is described in [6, 14, 15],
including the fusion algebra of the set of indecomposable representations naturally
associated with boundary conditions. In the models WLM(p, p′) with strict inequality
1 < p, however, there are additional irreducible representations whose fusion properties
have been systematically examined only very recently [16–18]. It would be of interest to
extend the work presented here and in [4, 9] on the series WLM(1, p) to the general series
WLM(p, p′).

2. Logarithmic minimal model WLM(1, p)

There is a W-extended logarithmic minimal model WLM(p, p′) for every co-prime pair of
positive integers p < p′ [15]. Since our interest here is in the series of these models with first
label equal to 1, we write WLM(1, p), for simplicity, where p > 1.

The model WLM(1, p) consists of 2p W-irreducible representations (κ, s)W and
2p − 2 W-indecomposable rank-2 representations

(
Rb

κ

)
W = (

R0,b
κ,p

)
W . The set of these

W-indecomposable representations is

I = {
(κ, s)W ,

(
Rb

κ

)
W; κ ∈ Z1,2, s ∈ Z1,p, b ∈ Z1,p−1

}
(2.1)

and has cardinality 4p − 2. Here we have introduced

Zn,m = Z ∩ [n,m], n,m ∈ Z (2.2)

and unless otherwise specified, we let

κ, κ ′ ∈ Z1,2, s, s ′ ∈ Z1,p, b, b′ ∈ Z1,p−1. (2.3)

2p of the 4p − 2 W-indecomposable representations are projective, namely the two rank-
1 representations (κ, p)W and all of the rank-2 representations. It follows that the two
representations (κ, s)W are both W-irreducible and projective. Since we are only considering
the logarithmic minimal models in the W-extended picture, we will omit specifications such
as W-irreducible and simply write irreducible in the following.

2.1. Fusion algebra

We denote the fusion multiplication in the W-extended picture by ⊗̂ . The fusion rules
underlying the commutative and associative fusion algebra of WLM(1, p) read [6–9]

(κ, s)W ⊗̂ (κ ′, s ′)W =
p−|p−s−s ′ |−1⊕

j=|s−s ′ |+1, by 2

(κ · κ ′, j)W ⊕
s+s ′−p−1⊕

β=ε(s+s ′−p−1), by 2

(
Rβ

κ·κ ′
)
W

(κ, s)W ⊗̂ (
Rb

κ ′
)
W =

p−|p−s−b|−1⊕
β=|s−b|+1, by 2

(
Rβ

κ·κ ′
)
W ⊕

s−b−1⊕
β=ε(s−b−1), by 2

2
(
Rβ

κ·κ ′
)
W

⊕
s+b−p−1⊕

β=ε(s+b−p−1), by 2

2
(
Rβ

2·κ·κ ′
)
W

3
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(
Rb

κ

)
W ⊗̂ (

Rb′
κ ′
)
W =

p−|b−b′ |−1⊕
β=ε(p−b−b′−1), by 2

2
(
Rβ

κ·κ ′
)
W ⊕

|p−b−b′ |−1⊕
β=ε(p−b−b′−1), by 2

2
(
Rβ

κ·κ ′
)
W

⊕
p−|p−b−b′ |−1⊕

β=ε(b+b′−1), by 2

2
(
Rβ

2·κ·κ ′
)
W ⊕

|b−b′ |−1⊕
β=ε(b+b′−1), by 2

2
(
Rβ

2·κ·κ ′
)
W , (2.4)

where we have introduced
(
R0

κ

)
W ≡ (κ, p)W and

ε(n) = 1 − (−1)n

2
, n · m = 1 + ε(n + m) = 3 − (−1)n+m

2
, n,m ∈ Z. (2.5)

We note that this dot product is associative. The irreducible representation (1, 1)W is the fusion-
algebra identity, and the fusion algebra is seen to be generated from repeated fusions of the
two fundamental representations (2, 1)W and (1, 2)W . The works [6–9] provide considerable
evidence for the validity of these fusion rules, though a rigorous proof is not known at present.

2.2. Fusion matrices and polynomial fusion ring

The fusion algebra, see [2] for example,

φi ⊗ φj =
⊕
k∈J

Ni,j
kφk, i, j ∈ J (2.6)

of a rational conformal field theory is finite (since the set J of fusion-algebra generators is
finite) and can be represented by a commutative matrix algebra 〈Ni; i ∈ J 〉 where the entries
of the |J | × |J | matrix Ni are

(Ni )j
k = Ni,j

k, i, j, k ∈ J (2.7)

and where the fusion multiplication ⊗ has been replaced by ordinary matrix multiplication. In
[19], Gepner found that every such algebra is isomorphic to a ring of polynomials in a finite set
of variables modulo an ideal defined as the vanishing conditions of a finite set of polynomials
in these variables.

With respect to some ordering of the fusion generators in (2.1), we let{
N(κ,s)W ,N(Rb

κ )W
; κ ∈ Z1,2, s ∈ Z1,p, b ∈ Z1,p−1

}
(2.8)

denote the set of fusion matrices realizing the fusion algebra (2.4) of WLM(1, p), where
N(κ,s)W and N(Rb

κ )W
are the matrix realizations of the indecomposable representations (κ, s)W

and
(
Rb

κ

)
W , respectively. These are all (4p−2)-dimensional square matrices, and we are thus

dealing with the regular representation of the fusion algebra. Special notation is introduced
for the two fundamental fusion matrices

X = N(2,1)W , Y = N(1,2)W . (2.9)

Since we are only considering WLM(1, p), we have thus abandoned the normalization
convention of [10] and will be using the one appearing in (2.9).

From [10], we have the fusion-matrix realization

N(κ,s)W = pol(κ,s)W
(X, Y ) = Xκ−1Us−1

(
Y

2

)
(2.10)

N(Rb
κ )W

= pol(Rb
κ )W

(X, Y ) = 2Xκ−1Tb

(
Y

2

)
Up−1

(
Y

2

)
of the fusion algebra of WLM(1, p), where Tn and Un are Chebyshev polynomials of the first
and second kind, respectively. Chebyshev polynomials are ubiquitous and discussed in [20],
for example, and in the appendix of [10].
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It also follows from [10] that this fusion algebra is isomorphic to the polynomial ring
C[X, Y ] modulo the ideal (X2 − 1, Pp(Y ), P̃1,p(X, Y )), that is〈
(κ, s)W ,

(
Rb

κ

)
W; κ ∈ Z1,2, s ∈ Z1,p, b ∈ Z1,p−1

〉 
 C[X, Y ]/
(
X2 − 1, Pp(Y ), P̃1,p(X, Y )

)
,

(2.11)

where

Pp(Y ) = (Y 2 − 4)U 3
p−1

(
Y

2

)
, P̃1,p(X, Y ) =

(
X − Tp

(
Y

2

))
Up−1

(
Y

2

)
. (2.12)

The polynomial P̃1,p(X, Y ) differs slightly from the polynomial P1,p(X, Y ) in [10] due to the
modified normalization convention in (2.9). As demonstrated in appendix A.1, we have

Pp(Y ) ≡ 0 (mod X2 − 1, P̃1,p(X, Y )) (2.13)

and hence〈
(κ, s)W ,

(
Rb

κ

)
W; κ ∈ Z1,2, s ∈ Z1,p, b ∈ Z1,p−1

〉 
 C[X, Y ]/(X2 − 1, P̃1,p(X, Y )) (2.14)

simplifying the description of the right-hand side of the isomorphism (2.11).
It is noted that X and Y in (2.11) and (2.14) are formal entities and hence need not be

identified with the fusion matrices X and Y in (2.9) and (2.10). It is nevertheless convenient to
use the same notation in the two situations. Using the explicit fusion matrices and their Jordan
decompositions to be discussed below, the quotient polynomial ring conditions in (2.11) are
verified partly by (3.7) and otherwise in appendix A.2.

3. Explicit fusion matrices

The set of fusion generators (2.1) is distinguished in the sense that the associated fusion rules
(2.4) involve only non-negative integer multiplicities. It turns out that the ordering

(1, 1)W , (2, 1)W; . . . ; (1, s)W , (2, s)W; . . . ; (1, p)W , (2, p)W;(
R1

1

)
W ,

(
R1

2

)
W; . . . ; (

Rb
1

)
W , (Rb

2)W; . . . ; (
Rp−1

1

)
W ,

(
Rp−1

2

)
W (3.1)

provides a convenient basis in which to study the fusion matrices, and is the one used in the
following. It is recalled that we are working with the regular representation of the fusion
algebra.

It should be clear that

N(1,1)W = I. (3.2)

The fusion matrices X and Y are given in (3.5) below. The fusion-matrix realizations of the
remaining generators in (2.1) can all be obtained by polynomial constructions (2.10) from the
realizations X and Y of the fundamental representations (2, 1)W and (1, 2)W .

3.1. Fundamental fusion matrices

To facilitate the description of the fundamental fusion matrices, we introduce

02 =
(

0 0
0 0

)
, I2 =

(
1 0
0 1

)
, C2 =

(
0 1
1 0

)
. (3.3)

For simplicity, we use I = Im and C = C2n to denote the m-dimensional identity matrix and
the 2n-dimensional square matrix

C = diag(C2, . . . , C2︸ ︷︷ ︸
n

), (3.4)

5
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respectively, when their dimensions are understood from the context. We note that C is an
involutory matrix, C2 = I .

In the basis (3.1), the fundamental fusion matrices read

X = C, Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

02 I2 02 · · ·
I2 02 I2

. . .

02 I2 02
. . .

...
. . .

. . .
. . .

02 I2
I2 02 I2

02 02 I2

2I2 02 I2
I2 02 I2

I2 02
. . .

. . .
. . .

02 I2
2C2 I2 02

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.5)

The (4p − 2)-dimensional matrix Y is written here as a (2p − 1)-dimensional matrix, with
2 × 2 matrices as entries, whose pth row and column are emphasized to indicate their special
status. For small values of p, expression (3.5) for Y is meant to reduce to

Y |p=2 =
⎛
⎝02 I2 02

02 02 I2

02 2I2 + 2C2 02

⎞
⎠ , Y |p=3 =

⎛
⎜⎜⎜⎜⎝

02 I2 02 02 02

I2 02 I2 02 02

02 02 02 I2 02

02 02 2I2 02 I2

02 02 2C2 I2 02

⎞
⎟⎟⎟⎟⎠ . (3.6)

As required, it follows from (3.5) that X and Y commute.
The minimal and characteristic polynomials of X are readily seen to be

X2 − I = (X − I )(X + I ), det(λI − X) = (λ − 1)2p−1(λ + 1)2p−1. (3.7)

The description of the similar polynomials for Y uses that the Chebyshev polynomial Up−1(x)

factorizes as

Up−1(x) = 2p−1
p−1∏
j=1

(x − αj ), αj = cos θj , θj = jπ

p
, j ∈ Z0,p, (3.8)

where we have included definitions of α0 = 1 and αp = −1. In accordance with (2.12), and
as we shall verify explicitly in appendix A.2, the minimal and characteristic polynomials of Y
are

Pp(Y ) = (Y 2 − 4I )U 3
p−1

(
Y

2

)
= (Y − 2I )(Y + 2I )

p−1∏
j=1

(Y − 2αj I )3

det(λI − Y ) = Up−1

(
λ

2

)
Pp(λ) = (λ2 − 4)U 4

p−1

(
λ

2

)
= (λ − 2)(λ + 2)

p−1∏
j=1

(λ − 2αj )
4.

(3.9)

This implies that the Jordan canonical form of Y consists of p−1 rank-3 blocks associated with
the eigenvalues βb = 2αb, b ∈ Z1,p−1 and p + 1 rank-1 blocks associated with the eigenvalues

6
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βj = 2αj , j ∈ Z0,p. The number of linearly independent eigenvectors of Y is thus 2p. Since
the null space of Y is empty for p odd but two-dimensional for p even, the rank of Y is

rank(Y ) = 4p − 2 − 2ε(p − 1) = 4(p − 1) + 2ε(p). (3.10)

4. Fusion graphs

The fusion matrices (2.8) are mutually commuting, but in general not diagonalizable.
Nevertheless, we will show that they can be simultaneously brought to Jordan form by
a similarity transformation, and that the associated similarity matrix is determined from
the modular data. Prior to demonstrating these important results, we here discuss the two
graphs whose underlying adjacency matrices are given by the fundamental fusion matrices
X = N(2,1)W and Y = N(1,2)W . In this context,

NμNν =
∑
λ∈I

Nμ,ν
λNλ (4.1)

is referred to as the graph fusion algebra. Here I is the set of indecomposable representations
given in (2.8). To simplify the notation, we introduce

Nκ,s = N(κ,s)W , Nb
κ = N(Rb

κ )W
. (4.2)

Fusion graphs succinctly encode the fusion rules and have been instrumental in the
classification of rational conformal field theories on the cylinder [21, 22] and on the torus
[23–26]. In the rational A-type theories, the Verlinde algebra yields a diagonal modular
invariant, while D- and E-type theories are related to non-diagonal modular invariants. The
Ocneanu algebras arise when considering fusion on the torus, with left and right chiral halves
of the theory, and involve Ocneanu graphs. We refer to [27–30] for earlier results on the
inter-relation between fusion algebras, graphs and modular invariants.

The fundamental fusion graph associated with Y follows from (3.5). For p = 4, in
particular, it is given by

N1,1 N1,2 N1,3 N1,4

N1
1

N2
1

N3
1

N3
2

N2
2

N1
2

N2,4 N2,3 N2,2 N2,1

(4.3)

This is readily extended to general p where we have

N1,1 . . . N1,p−1 N1,p

N1
1

. . .
Np−1

1

Np−1
2

. . .
N1

2

N2,p N2,p−1 . . . N2,1

(4.4)

7
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which, for p = 2, reduces to

N1,1 N1,2

N1
1

N1
2

N2,2 N2,1
(4.5)

The fundamental fusion graph associated with X has 2p − 1 disconnected components

N1,s N2,s N b
1 N b

2 (4.6)

where it is recalled that s ∈ Z1,p and b ∈ Z1,p−1. The fundamental fusion graph associated
with Y is covariant under the action of X in the sense that X acts by rotating the graph, as it is
depicted in (4.4), by 180◦. Ignoring the labeling of the N’s appearing in (4.4), the graph itself
is invariant under rotation by 180◦.

It is recalled that there are 2p irreducible representations, (κ, s)W , and 2p projective
representations, (κ, p)W and

(
Rb

κ

)
W , where the two representations (κ, p)W are both

irreducible and projective. The two horizontal legs of the fusion graph (4.4) are composed of
the irreducible representations, while the loop consists of the projective representations with
Nκ,p ∼ (κ, p)W appearing in both a horizontal leg and the loop. Combined with the two
one-way arrows linking Nκ,p−1 → Nκ,p, this reflects that the set of projective representations
forms an ideal of the fusion algebra (2.4).

5. Spectral decompositions

In preparation for the spectral decomposition of the various fusion matrices, we recall that the
canonical rank-3 Jordan block associated with the eigenvalue λ is given by

Jλ,3 =
⎛
⎝λ 1 0

0 λ 1
0 0 λ

⎞
⎠ . (5.1)

It is sometimes convenient to relax the condition of unity in the super-diagonal of a Jordan
block. We thus refer to any matrix of the form⎛

⎝λ ν1 ν3

0 λ ν2

0 0 λ

⎞
⎠ , ν1 �= 0, ν2 �= 0, (5.2)

as a Jordan block of rank-3 associated with the eigenvalue λ. The Jordan canonical block
Jλ,3 is recovered by setting ν1, ν2 = 1 and ν3 = 0. A block-diagonal matrix consisting of
(canonical) Jordan blocks only is said to be in Jordan (canonical) form. Also, for a function g
expandable as a power series, we note that

g

⎛
⎝

⎛
⎝λ ν1 ν3

0 λ ν2

0 0 λ

⎞
⎠

⎞
⎠ =

⎛
⎝g(λ) ν1g

′(λ) ν3g
′(λ) + 1

2ν1ν2g
′′(λ)

0 g(λ) ν2g
′(λ)

0 0 g(λ)

⎞
⎠ . (5.3)

Our first objective in this section is to devise a similarity transformation in the form of a
matrix Q which Jordan-decomposes X and Y simultaneously:

Q−1XQ = JX, Q−1YQ = JY , (5.4)

8
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where JX and JY are Jordan canonical forms. For every N in (2.8), it then follows that

Q−1NQ = Q−1polN (X, Y )Q = polN (Q−1XQ,Q−1YQ) = polN (JX, JY ), (5.5)

implying that Q also brings N to Jordan form, albeit not necessarily Jordan canonical form.
Our second objective is therefore to find invertible matrices Q̂N such that

QN = QQ̂N (5.6)

converts N into

Q−1
N NQN = Q̂−1

N polN (JX, JY )Q̂N = JN , (5.7)

where JN is a Jordan canonical form.

5.1. Fundamental fusion matrices

For k ∈ Z1,2p−1, we define the function fk(x) by

fs(x) = Us−1

(x

2

)
, fp+b(x) = 2Tb

(x

2

)
Up−1

(x

2

)
= Up+b−1

(x

2

)
+ Up−b−1

(x

2

)
,

(5.8)

where it is recalled that s ∈ Z1,p and b ∈ Z1,p−1. These functions describe the Y-parts of
(2.10):

N(κ,s)W = Xκ−1fs(Y ), N(Rb
κ )W

= Xκ−1fp+b(Y ) (5.9)

and are used below in the construction of the similarity matrix Q. Certain properties of fk(x)

are described in appendix B. In the following, we will initially assume that p > 2 and
subsequently consider the case p = 2.

5.1.1. p > 2. Let us introduce the p + 1 (4p − 2)-dimensional vectors

v0 =

⎛
⎜⎝

f1(β0)v0

...

f2p−1(β0)v0

⎞
⎟⎠ , vb =

⎛
⎜⎝

f1(βb)vb−1

...

f2p−1(βb)vb−1

⎞
⎟⎠ , vp =

⎛
⎜⎝

f1(βp)vp

...

f2p−1(βp)vp

⎞
⎟⎠ ,

(5.10)

where we draw attention to the different conventions for the indices of the auxiliary two-
dimensional vectors

vn =
(

1
(−1)n

)
, n ∈ Z. (5.11)

For every b ∈ Z1,p−1, we also introduce the triplet of (4p − 2)-dimensional vectors:

w
(1)
b =

⎛
⎜⎝

f1(βb)vb

...

f2p−1(βb)vb

⎞
⎟⎠ , w

(2)
b =

⎛
⎜⎝

f ′
1(βb)vb

...

f ′
2p−1(βb)vb

⎞
⎟⎠ , w

(3)
b =

⎛
⎜⎝

1
2f ′′

1 (βb)vb

...
1
2f ′′

2p−1(βb)vb

⎞
⎟⎠ .

(5.12)

Using (B.1)–(B.3), in particular, it is straightforward to verify that the p + 1 vectors in (5.10)
are eigenvectors of Y corresponding to the eigenvalues β0, βb and βp, and that, for every
b ∈ Z1,p−1, the three vectors in (5.12) form a Jordan chain

Yw
(3)
b = βbw

(3)
b + w

(2)
b , Yw

(2)
b = βbw

(2)
b + w

(1)
b , Yw

(1)
b = βbw

(1)
b (5.13)

9



J. Phys. A: Math. Theor. 43 (2010) 105201 J Rasmussen

corresponding to the eigenvalue βb. This chain of relations imply that

(Y − βbI)w
(3)
b = w

(2)
b , (Y − βbI)w

(2)
b = w

(1)
b , (Y − βbI)�w

(�)
b = 0, � ∈ Z1,3,

(5.14)

where the vanishing conditions indicate that the vectors are generalized eigenvectors.
The two eigenvectors vb and w

(1)
b correspond to the same eigenvalue βb but are obviously

linearly independent. Since βi �= βj for i �= j , the (4p − 2)-dimensional matrix Q is
constructed by concatenating the generalized (of which 2p are proper) eigenvectors (5.10) and
(5.12):

Q =
(
v0 v1 w

(1)
1 w

(2)
1 w

(3)
1 . . . vp−1 w

(1)
p−1 w

(2)
p−1 w

(3)
p−1 vp

)
. (5.15)

By the similarity transformation (5.4), this matrix Q converts Y into its Jordan canonical form

JY = diag(β0;β1,J1; . . . ;βb,Jb; . . . ;βp−1,Jp−1;βp), Jb = Jβb,3, (5.16)

where Jβb,3 is the canonical rank-3 Jordan block (5.1) associated with the eigenvalue βb.
Thus, the eigenvalues β0 = 2 and βp = −2 both have geometric and algebraic multiplicity 1,
whereas the p − 1 eigenvalues βb = 2 cos θb all have geometric multiplicity 2 and algebraic
multiplicity 4. This is in accordance with the minimal and characteristic polynomials of Y
in (3.9).

It is readily verified that the Jordan canonical form (5.4) of X with respect to Q in (5.15)
is the diagonal matrix

JX = diag(1; 1,−I3; . . . ; (−1)b−1, (−1)bI3; . . . ; (−1)p−2, (−1)p−1I3; (−1)p). (5.17)

The eigenvalues 1 and −1 both appear with geometric and algebraic multiplicity 2p − 1 in
accordance with the minimal and characteristic polynomials in (3.7).

In conclusion, the matrix Q (5.15) converts the fundamental fusion matrices X and Y
simultaneously into their Jordan canonical forms JX and JY. We note that JX and JY commute
since X and Y commute. Their commutativity also follows directly from their compatible
block structures.

As an aside, based on explicit evaluations of the determinant of Q for small values of p,
we conjecture that, for general p, it is given by

det Q = 32(−1)p(2p)5p−9. (5.18)

5.1.2. p = 2. For p = 2, Y is given in (3.6) and the expressions (5.10) and (5.12) yield the
six generalized eigenvectors

v0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1
2
2
4
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, v1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, w
(1)
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.19)

w
(2)
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

−1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, w
(3)
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, v2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1

−2
−2
4
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

10
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corresponding to the eigenvalues β0 = −2, β1 = 0 and β2 = 2. The associated similarity
matrix (5.15) reads

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1
1 1 −1 0 0 1
2 0 0 1 0 −2
2 0 0 −1 0 −2
4 0 0 0 1 4
4 0 0 0 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5.20)

and has determinant det (Q) = 128 (in accordance with (5.18)), and Jordan decomposes X
and Y simultaneously

Q−1XQ = diag(1, 1,−1,−1,−1, 1), Q−1YQ = diag(2, 0,J1,−2), (5.21)

where the diagonal elements of the canonical rank-3 Jordan block J1 are β1 = 0.

5.2. General fusion matrices

The similarity matrix Q brings all fusion matrices N simultaneously to Jordan form (5.5).
Except for the two fundamental fusion matrices X and Y, these Jordan forms are typically
non-canonical. The objective here is to determine the refinement QN (5.6) of Q converting
the fusion matrix N into the Jordan canonical form (5.7). Thus, continuing the Jordan
decomposition of N in (5.5) and (5.7), we have

Q−1
N NQN = Q̂−1

N J κ−1
X f (JY )Q̂N

= Q̂−1
N diag

(
f (β0); . . . ; (−1)(κ−1)(b−1)f (βb), (−1)(κ−1)bf (Jb); . . . ;

(−1)(κ−1)pf (βb)
)
Q̂N , (5.22)

where b runs from 1 to p − 1, while f = fk , k ∈ Z1,2p−1, is the function partaking in the
description of the given fusion matrix N (5.9). With (5.3) in mind, we here list the Jordan
decompositions of all three-dimensional upper-triangular matrices whose entries of a given
(super-)diagonal are identical:⎛
⎝1

1
1

⎞
⎠

−1 ⎛
⎝a

a
a

⎞
⎠

⎛
⎝1

1
1

⎞
⎠ =

⎛
⎝a

a
a

⎞
⎠

⎛
⎝0 1 0

1 0 0
0 0 1

c

⎞
⎠

−1 ⎛
⎝a 0 c

a 0
a

⎞
⎠

⎛
⎝0 1 0

1 0 0
0 0 1

c

⎞
⎠ =

⎛
⎝a 0 0

a 1
a

⎞
⎠ , c �= 0 (5.23)

⎛
⎜⎝

1 c
b2 0
1
b 0

1
b2

⎞
⎟⎠

−1 ⎛
⎝a b c

a b
a

⎞
⎠

⎛
⎜⎝

1 c
b2 0
1
b 0

1
b2

⎞
⎟⎠ =

⎛
⎝a 1 0

a 1
a

⎞
⎠ , b �= 0.

To complete the spectral decomposition of the fusion matrix N , by finding the associated
Jordan canonical form JN and similarity matrix Q̂N , it is therefore necessary to determine
whether f ′

k(βb) or f ′′
k (βb) is zero for k ∈ Z1,2p−1 and b ∈ Z1,p−1. These possibilities are

classified in appendix B.3.
Now, the results (B.13) immediately confirm that

J(1,1)W = I, J(2,1)W = JX, J(1,2)W = JY (5.24)

11
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and

Q(1,1)W = Q(2,1)W = Q(1,2)W = Q, Q̂(1,1)W = Q̂(2,1)W = Q̂(1,2)W = I, (5.25)

where we have introduced the simplified notation J(κ,s)W = JN(κ,s)W
and similarly for QN and

Q̂N . Below, we will also use J(Rb
κ )W

= JN
(Rb

κ )W
and similarly for QN and Q̂N . The Jordan

canonical forms JN and similarity matrices Q̂N of the remaining (cf (5.24) and (5.25)) fusion
matrices N(κ,s)W and N(Rb′

κ )W
in (2.8) depend on the relations between p, the labels κ , s and b′,

and the labeling b of the eigenvalues βb. In the following, we list these results for JN and Q̂N ,
recalling that the similarity matrix Jordan-decomposing N is given by QN = QQ̂N (5.6). To
this end, we introduce

Qg(x) =

⎛
⎜⎝1 g′(x)

2g2(x)
0

0 1
g(x)

0

0 0 1
g2(x)

⎞
⎟⎠ , J (1,2)

λ,3 =
⎛
⎝λ 0 0

0 λ 1
0 0 λ

⎞
⎠ , (5.26)

where g is a polynomial evaluated at a point where g(x) �= 0.
Now, for p odd, we have f ′

k(βb) �= 0 for k ∈ Z2,2p−1, implying that, for s ∈ Z2,p,

J(κ,s)W = diag(s; . . . ; (−1)(κ−1)(b−1)fs(βb),J(−1)(κ−1)bfs (βb),3; . . . ; s(−1)κ+s)

J(κ,p)W = diag(p; . . . ; 0,J0,3; . . . ;p(−1)κ+1)
(5.27)

J(Rb′
κ )W

= diag(2p; . . . ; 0,J0,3; . . . ; 2p(−1)κ+b′−1)

Q̂N = diag(1; . . . ; 1,Q(−1)(κ−1)bf ′(βb); . . . ; 1),

where f = fs for N = N(κ,s)W while f = fp+b′ for N = N(Rb′
κ )W

. For p even, we let
b1 ∈ Z1,

p

2 −1 and b2 ∈ Z p

2 +1,p−1 and find

J(κ,s)W = diag
(
s; . . . ; (−1)(κ−1)(b1−1)fs

(
βb1

)
,J(−1)(κ−1)b1 fs(βb1 ),3; . . . ; 0,J0,3; . . . ;

(−1)(κ−1)(b2−1)fs(βb2),J(−1)(κ−1)b2 fs(βb2 ),3; . . . ;−s
)

J(κ,p)W = diag(p; . . . ; 0,J0,3; . . . ;−p) (5.28)

Q̂(κ,s)W = diag

(
1; . . . ; 1,Q(−1)(κ−1)b1 f ′

s (βb1 ); . . . ; 1, 1,
(−1)(κ−1)

p

2 +j−1

j
,

1

j 2
; . . . ;

1,Q(−1)(κ−1)b2 f ′
s (βb2 ); . . . ; 1

)
,

for s = 2j , j ∈ Z2,
p

2
and

J(κ,s)W = diag
(
s; . . . ; (−1)(κ−1)(b1−1)fs

(
βb1

)
,J(−1)(κ−1)b1 fs(βb1 ),3; . . . ; (−1)(κ−1)(

p

2 −1)+j ,

J (1,2)

(−1)
(κ−1)

p
2 +j

,3
; . . . ; (−1)(κ−1)(b2−1)fs(βb2),J(−1)(κ−1)b2 fs(βb2 ),3; . . . ; s

)
Q̂(κ,s)W = diag

(
1; . . . ; 1,Q(−1)(κ−1)b1 f ′

s (βb1 ); . . . ; 1, C2,
2(−1)(κ−1)

p

2 +j−1

j (j + 1)
; . . . ;

1,Q(−1)(κ−1)b2 f ′
s (βb2 ); . . . ; 1

)
(5.29)

for s = 2j + 1, j ∈ Z1,
p

2 −1. For p

2(b′,p)
/∈ N, b′ is necessarily even and we have

J(Rb′
κ )W

= diag(2p; . . . ; 0,J0,3; . . . ;−2p)

12
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Q̂(Rb′
κ )W

= diag

(
1; . . . ; 1,Q(−1)(κ−1)b1 f ′

p+b′ (βb1 ); . . . ; 1, 1,
(−1)

κp+b′
2 −1

p
,

1

p2
; . . . ;

(5.30)

1,Q(−1)(κ−1)b2 f ′
p+b′ (βb2 ); . . . ; 1

)
,

whereas for p

2(b′,p)
∈ N, we have

J(Rb′
κ )W

= diag(2p; . . . ; 0, Jb′,b; . . . ; (−1)b
′
2p)

(5.31)
Q̂(Rb′

κ )W
= diag(1; . . . ; 1,Qb′,b; . . . ; 1),

where

Jb′,b = J (1,2)
0,3 , Qb′,b = diag

(
C2,

2(−1)(κ−1)b

f ′′
p+b′(βb)

)
, b = (2j−1)p

2(b′,p)
, j ∈ Z1,(b′,p)

Jb′,b = J0,3, Qb′,b = Q(−1)(κ−1)bf ′
p+b′ (βb), otherwise.

(5.32)

Further simplifications are possible but not included here. Above, (n,m) denotes the greatest
common divisor of the integers n and m.

6. Generalized Jordan chains and non-canonical Jordan forms

In preparation for the description of the Jordan decompositions of the fusion matrices in terms
of modular data in section 7.2, we here present a particularly convenient similarity matrix
which brings all the fusion matrices simultaneously to Jordan form. Unlike the similarity
transformations considered so far, however, this one converts the fundamental fusion matrix
Y into a non-canonical Jordan form.

Based on the Jordan chain (5.13), we introduce the vectors

w̃
(1)
b = μ

(1)
b,1w

(1)
b , w̃

(2)
b = μ

(2)
b,2w

(2)
b + μ

(2)
b,1w

(1)
b ,

(6.1)
w̃

(3)
b = μ

(3)
b,3w

(3)
b + μ

(3)
b,2w

(2)
b + μ

(3)
b,1w

(1)
b ,

where μ
(�)
b,� �= 0. Unlike the original triplet w

(1)
b , w

(2)
b , w

(3)
b , the triplet w̃

(1)
b , w̃

(2)
b , w̃

(3)
b does not

form a Jordan chain. Instead, it forms the generalized Jordan chain

Y
(
w̃

(1)
b w̃

(2)
b w̃

(3)
b

) = (
w̃

(1)
b w̃

(2)
b w̃

(3)
b

)
⎛
⎜⎜⎜⎜⎝

βb
μ

(2)
b,2

μ
(1)
b,1

μ
(2)
b,2μ

(3)
b,2−μ

(2)
b,1μ

(3)
b,3

μ
(1)
b,1μ

(2)
b,2

0 βb
μ

(3)
b,3

μ
(2)
b,2

0 0 βb

⎞
⎟⎟⎟⎟⎠ . (6.2)

This generalization is particularly useful if the (3 × 3)-matrix in (6.2) can be written as

φ(Jθb,3) = φ

⎛
⎝

⎛
⎝θb 1 0

0 θb 1
0 0 θb

⎞
⎠

⎞
⎠ =

⎛
⎝φ(θb) φ′(θb)

1
2φ′′(θb)

0 φ(θb) φ′(θb)

0 0 φ(θb)

⎞
⎠

=
⎛
⎝βb −2 sin θb − cos θb

0 βb −2 sin θb

0 0 βb

⎞
⎠ , (6.3)

where

φ(θ) = 2 cos θ. (6.4)

13
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We note that setting

μ
(�)
b,� = (−1)b−1(−2 sin θb)

�

p
√

2p
, μ

(2)
b,1 = 2(−1)b cos θb

p
√

2p
,

(6.5)

μ
(3)
b,κ = (2κ − 1)(−1)b−1 sin κθb

p
√

2p

respects (6.3). In this case, and written in the basis (3.1) indicated by the labeling
(κ, s)W ,

(
Rb

κ

)
W , the entries of the vectors w̃

(�)
b read

w̃
(1)
b′ =

(
2(−1)κb′

sin sθb′
p
√

2p

0

)
, w̃

(2)
b′ =

⎛
⎝ 2(−1)κb′

s cos sθb′
p
√

2p

4(−1)(κ−1)b′
p cos bθb′

p
√

2p

⎞
⎠ , w̃

(3)
b′ =

⎛
⎝ (−1)κb′+1s2 sin sθb′

p
√

2p

4(−1)κb′−b′+1pb sin bθb′
p
√

2p

⎞
⎠ ,

(6.6)

where there are 2p entries above and 2p − 2 entries below the horizontal separator in a given
vector. It is likewise convenient to normalize the eigenvectors v(κ ′−1)p and vb by introducing
the vectors

ṽ(κ ′−1)p = μ(κ ′−1)pv(κ ′−1)p = (−1)(κ
′−1)(p−1)

p
√

2p
v(κ ′−1)p =

⎛
⎝ s(−1)(κ

′−1)(κp+s)

p
√

2p

2p(−1)(κ
′−1)((κ−1)p+b)

p
√

2p

⎞
⎠

(6.7)

ṽb′ = μb′vb′ = 2(−1)b
′
sin θb′

p
√

2p
vb′ =

(
2(−1)κb′+κ−1 sin sθb′

p
√

2p

0

)
.

Now, constructed by concatenating the vectors ṽj and w̃
(�)
b , the similarity matrix

Q̃ =
(
ṽ0 ṽ1 w̃

(1)
1 w̃

(2)
1 w̃

(3)
1 . . . ṽp−1 w̃

(1)
p−1 w̃

(2)
p−1 w̃

(3)
p−1 ṽp

)
(6.8)

converts X and Y simultaneously

Q̃−1XQ̃ = J̃ X, Q̃−1YQ̃ = J̃ Y (6.9)

into the Jordan forms

J̃ X = JX, J̃ Y = diag
(
β0;β1, φ

(
Jθ1,3

); . . . ;βp−1, φ
(
Jθp−1,3

);βp

)
. (6.10)

It is noted that J̃ Y is a non-canonical Jordan form, as already announced. More generally, for
N = Xκ−1f (Y ) as in (5.9), we have

Q̃−1N Q̃ = J̃N = J κ−1
X f ◦ φ

(
diag

(
θ0; . . . ; θb,Jθb,3; . . . ; θp

))
(6.11)

with b running from 1 to p − 1. That is,

J̃N = diag
(
f (β0); . . . ; (−1)(κ−1)(b−1)f (βb), (−1)(κ−1)bf ◦ φ

(
Jθb,3

); . . . ; (−1)(κ−1)pf (βp)
)
,

(6.12)

where

f ◦ φ(Jθb,3) =
⎛
⎝f ◦ φ(θb) (f ◦ φ)′(θb)

1
2 (f ◦ φ)′′(θb)

0 f ◦ φ(θb) (f ◦ φ)′(θb)

0 0 f ◦ φ(θb)

⎞
⎠

=
⎛
⎝f (βb) −2 sin θbf

′(βb) − cos θbf
′(βb) + 2 sin2 θbf

′′(βb)

0 f (βb) −2 sin θbf
′(βb)

0 0 f (βb)

⎞
⎠ . (6.13)

14
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It is straightforward, albeit somewhat tedious, to show that the inverse of Q̃ is given by

Q̃−1 = 1

p
√

2p⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 p p − b
...

...
...

(−1)κ(b′−1)+1p2 sin bθb′ 0 1
4 (−1)(κ−1)(b′−1)p2 sin bθb′

(−1)κb′
p2 sin bθb′ 0 1

4 (−1)(κ−1)b′+1
(
p2 − 2(p − b)2

)
sin bθb′

0 (−1)(κ−1)b′
p (−1)(κ−1)b′

(p − b) cos bθb′

0 0 (−1)(κ−1)b′+1 sin bθb′

...
...

...

0 (−1)(κ−1)pp (−1)(κ−1)p+b(p − b)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6.14)

The columns are labeled by (κ, b)W , (κ, p)W and
(
Rb

κ

)
W , while the rows are labeled by ṽ0,

the p − 1 quadruplets ṽb′ , w̃
(1)
b′ , w̃

(2)
b′ and w̃

(3)
b′ , and ṽp. Finally, the determinant of Q̃ follows

from that of Q (5.18) and is found to be

det Q̃ = μ0μp

(
p−1∏
b=1

μb

3∏
�=1

μ
(�)
b,�

)
det Q = det Q

22p−1p6p−10
= (−1)p

(
8

p

)p−1

(6.15)

7. Generalized Verlinde formula

7.1. Characters and modular data

The irreducible characters are given by

χ̂κ,s(q) = χ [(κ, s)W ](q) = 1

η(q)

∑
j∈Z

(2j + κ)q
p(j+ κp−s

2p
)2

, (7.1)

where η(q) is the Dedekind eta function:

η(q) = q1/24
∞∏

m=1

(1 − qm). (7.2)

The characters of the indecomposable rank-2 representations are given by

χ
[(
Rb

1

)
W

]
(q) = χ

[(
Rp−b

2

)
W

]
(q) = 2χ̂2,b(q) + 2χ̂1,p−b(q). (7.3)

There are p + 1 linearly independent projective characters, namely χ̂κ,p(q) for κ ∈ Z1,2 and
the ones in (7.3).

The set of irreducible characters (7.1) does not close under modular transformations.
Instead, a representation of the modular group is obtained [31–34] by enlarging the set with
the p − 1 so-called pseudo-characters:

χ̂0,b(q) = iτ(bχ̂1,p−b(q) − (p − b)χ̂2,b(q)), (7.4)

where the modular parameter is given by

q = e2π iτ . (7.5)
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Writing the associated (generalized) modular S-matrix in block form with respect to the
distinction between proper characters χ̂κ,s(q) and pseudo-characters χ̂0,b(q), the entries read

S =
(

Sκ ′,s ′
κ,s S0,b′

κ,s

S
κ ′,s ′
0,b S

0,b′
0,b

)
=

⎛
⎜⎝

(2−δs′ ,p)(−1)κs′+κ′s+κκ′ps cos ss′π
p

p
√

2p

2(−1)κb′
sin sb′π

p

p
√

2p

2(−1)κ
′b(p−s ′) sin bs′π

p√
2p

0

⎞
⎟⎠ . (7.6)

Here the lower (upper) indices refer to the row (column) labeling. This matrix is not symmetric
and not unitary, but satisfies S2 = I . We note that

S1,p−b
κ,s = S2,b

κ,s (7.7)

implying that, under the modular transformation τ → −1
τ

, the 2p irreducible characters
transform into linear combinations of the p + 1 projective characters (with expansion
coefficients S

κ ′,p
κ,s and 1

2S2,b
κ,s ) and the p − 1 pseudo-characters (with expansion coefficients

S0,b
κ,s ), only. We also introduce

S
κ ′,s ′
(Rb

κ )W
= 2

(
S

κ ′,s ′
κ,p−b + S

κ ′,s ′
2·κ,b

)
(7.8)

and similarly for related combinations. We finally note that, formally,

S2,b
κ,s = ∂

∂θb

S0,b
κ,s . (7.9)

Alternatively, one can introduce the 2p-dimensional, τ -dependent (and thus improper)
S-matrix

S − iτ S̃ (7.10)

(here written in calligraphic to distinguish it from the proper S-matrix in (7.6)) obtained by
expanding the pseudo-characters in terms of the irreducible characters. Its entries thus read

Sκ ′,s ′
κ,s = Sκ ′,s ′

κ,s , S̃κ ′,s ′
κ,s =

2(−1)κs ′+κ ′s+κκ ′p(p − s ′) sin ss ′π
p

p
√

2p
(7.11)

from which it follows that

(p − b)S̃1,p−b
κ,s = −bS̃2,b

κ,s (7.12)

and

S̃1,b′
κ,s = −(p − b′)S0,p−b′

κ,s , S̃2,b′
κ,s = (p − b′)S0,b′

κ,s , S̃κ ′,p
κ,s = 0. (7.13)

It is easily seen that an expression can be written in terms of the proper S-matrix S if and only
if it can be written in terms of the improper S-matrix S − iτ S̃. We use exclusively the proper
S-matrix S in the following.

7.2. Generalized Verlinde formula

The objective here is to express the spectral decompositions of the fusion matrices in terms
of the modular data. The various expressions are not unique, as indicated by the rather trivial
identity S

κ,p

2,1

/
S

1,p

1,1 = S
0,1
κ,1

/
S

0,1
1,1 , for example. First, we observe that the eigenvalues can be

written as

β(κ ′−1)p = S
κ ′,p
1,2

S
κ ′,p
1,1

, βb′ = S
0,b′
1,2

S
0,b′
1,1

(7.14)
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and that

fs(β(κ ′−1)p) = S
κ ′,p
1,s

S
κ ′,p
1,1

, fs(βb′) = S
0,b′
1,s

S
0,b′
1,1

, fp+b(β(κ ′−1)p) =
S

κ ′,p
(Rb

1)W

S
κ ′,p
1,1

, fp+b(βb′) =
S

0,b′

(Rb
1)W

S
0,b′
1,1

.

(7.15)

With reference to (6.13), the remaining entries of the Jordan form J̃N (6.12) follow from

−2 sin θb′f ′
s (βb′) = S

0,b′
1,1 S

2,b′
1,s − S

2,b′
1,1 S

0,b′
1,s(

S
0,b′
1,1

)2

−2 sin θb′f ′
p+b(βb′) =

S
0,b′
1,1 S

2,b′

(Rb
1)W

− S
2,b′
1,1 S

0,b′

(Rb
1)W(

S
0,b′
1,1

)2 =
S

2,b′

(Rb
1)W

S
0,b′
1,1

−cos θb′f ′
s (βb′) + 2 sin2 θb′f ′′

s (βb′) = S
1,p

1,s S
1,p

1,s S
0,b′
1,s

S
2,p

2,1 S
1,p

1,2 S
0,b′
1,1

+
S

1,p

1,1 S
0,b′
1,s

S
1,p

1,2 S
0,b′
1,1

+
S

2,p

2,1 S
0,b′
1,2 S

2,b′
2,s + (S

2,b′
1,1 )2S

0,b′
1,s(

S
0,b′
1,1

)3

−cos θb′f ′
p+b(βb′) + 2 sin2 θb′f ′′

p+b(βb′) = S
2,p

1,1 S
1,p

1,2 S
2,p

1,b′S
0,b′
1,b

(S
1,p

1,1 )3S
0,b′
1,1

−
S

2,b′
1,1 S

2,b′

(Rb
1)W(

S
0,b′
1,1

)2 . (7.16)

The columns of the similarity matrix Q̃ (6.8) can be written as

ṽ(κ ′−1)p =
(

S
κ ′,p
(κ,s)W

S
κ ′,p
(Rb

κ )W

)
, ṽb′ =

⎛
⎜⎝

S
κ,p

2,1

S
1,p

1,1

S
0,b′
(κ,s)W

S
κ,p

2,1

S
1,p

1,1

S
0,b′
(Rb

κ )W

⎞
⎟⎠

w̃
(1)
b′ =

(
S

0,b′
(κ,s)W

S
0,b′
(Rb

κ )W

)
, w̃

(2)
b′ =

(
S

2,b′
(κ,s)W

S
2,b′
(Rb

κ )W

)
, w̃

(3)
b′ =

⎛
⎜⎝

S
1,p

1,s S
1,p

1,s

S
2,p

2,1 S
1,p

1,2

S
0,b′
(κ,s)W

S
2,p

1,1 S
1,p

1,2 S
2,p

1,b′
(S

1,p

1,1 )3
S

0,b′
(κ,b)W

⎞
⎟⎠ , (7.17)

while the entries of Q̃−1 (6.14) follow from

p

p
√

2p
= S1,p

κ,p ,
p − b

p
√

2p
= S

1,p

κ,p−b,
(−1)κ(b′−1)+1p2 sin bθb′

p
√

2p
= S

1,p

1,p S
1,p

1,p

S
1,p

1,2 S
κ,p

2,1

S
0,b′
κ,b

1
4 (−1)(κ−1)(b′−1)p2 sin bθb′

p
√

2p
= S

κ,p

2,1

(
S

1,p

1,p

)2(
S

1,p

1,2

)3 S
0,b′
κ−1,b,

(−1)κb′
p2 sin bθb′

p
√

2p
= S

1,p

1,p S
1,p

1,p

S
1,p

1,2 S
1,p

1,1

S
0,b′
κ,b

1
4 (−1)(κ−1)b′+1

(
p2 − 2(p − b)2

)
sin bθb′

p
√

2p
= S

1,1
1,p

(
S

1,p

1,p

)2(
S

1,p

1,2

)3 S
0,b′
κ,p−b +

(
S

1,p

1,p−b

)2(
S

1,p

1,2

)2 S
0,b′
κ−1,b (7.18)

(−1)(κ−1)b′
p

p
√

2p
= S

1,p

1,1

S
1,p

1,2

S2,b′
κ,p ,

(−1)(κ−1)b′
(p − b) cos bθb′

p
√

2p
= S

1,p

1,1

S
1,p

1,2

S
2,b′
κ,p−b

(−1)(κ−1)b′+1 sin bθb′

p
√

2p
= S

1,p

1,1

S
1,p

1,2

S
0,b′
κ,p−b,

(−1)(κ−1)pp

p
√

2p
= S2,p

κ,p ,

(−1)(κ−1)p+b(p − b)

p
√

2p
= S

2,p

κ,p−b.

In summary, the announced generalized Verlinde formula reads

N = Q̃J̃N Q̃−1, (7.19)

where Q̃, J̃N and Q̃−1 are expressed in terms of the modular data as outlined above.
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8. Partition functions

Due to the presence of reducible yet indecomposable representations, the fusion algebra
contains more information than needed for the computation of partition functions as the latter
are given in terms of characters only. It is therefore natural to try to identify reductions of the
fusion algebra which can replace it when considering partition functions. It is the objective
here to outline how certain rings of equivalence classes of fusion-algebra generators do the job.
As we will see, two simple requirements ensure that the partition functions can be expressed
in terms of the ring data.

In a given (possibly logarithmic) CFT, we let {χi(q)} denote the set of irreducible
characters and {Fμ} the set of generators of the fusion algebra

Fμ ⊗ Fν =
⊕

λ

Nμ,ν
λFλ, Nμ,ν

λ ∈ N0. (8.1)

The character of a fusion generator is obtained by acting on it with χ :

χ [Fμ](q) :=
∑

i

fμ
iχi(q), fμ

i ∈ N0. (8.2)

This map extends by linearity. We refer to the matrix formed by the coefficients fμ
i as the

structure matrix.
We let {Gm} denote the set of equivalence classes of the linear span of fusion generators

with respect to some equivalence relation ∼. The projector onto these classes is denoted by G
and maps a fusion generator into a linear combination of equivalence classes:

G[Fμ] :=
∑
m

hμ
mGm, hμ

m ∈ C. (8.3)

This projector extends by linearity with respect to direct sums.
Let a multiplication ∗ be defined on the set of equivalence classes

Gm ∗ Gn =
∑

�

Mm,n
�G�, Mm,n

� ∈ C. (8.4)

For this to be compatible with the fusion rules, we require that

G[Fμ ⊗ Fν] = G[Fμ] ∗ G[Fν] (8.5)

and subsequently say that the fusion rules (8.1) induce the multiplication rules on the
equivalence classes. As a consequence, we have∑

λ

Nμ,ν
λhλ

� =
∑
m,n

hμ
mhν

nMm,n
�. (8.6)

We also introduce a map χ̃ from the set of equivalence classes to the set of characters

χ̃ [Gm] :=
∑

i

gm
iχi(q), gm

i ∈ C, (8.7)

requiring that

χ̃ ◦ G = χ. (8.8)

This implies that every lift G−1
m of the equivalence class Gm to the set of fusion generators has

the same character

χ [G−1
m ] = χ̃[Gm]. (8.9)

18



J. Phys. A: Math. Theor. 43 (2010) 105201 J Rasmussen

From examining χ [Fμ], it follows that

fμ
i =

∑
m

hμ
mgm

i. (8.10)

We now consider the partition function (to be discussed further in section 8.2)

Zμ,ν(q) := χ [Fμ ⊗ Fν](q) =
∑
λ,i

Nμ,ν
λfλ

iχi(q). (8.11)

Using the above, including the two requirements, we see that this can be written in terms of
the data for the equivalence classes

Zμ,ν(q) =
∑

m,n,�,i

hμ
mhν

nMm,n
�g�

iχi(q). (8.12)

By construction, we thus have∑
m,n,�

hμ
mhν

nMm,n
�g�

i ∈ N0. (8.13)

It follows that, in order to obtain the partition functions (8.11), it suffices to know the algebra
of the equivalence classes provided this algebra respects the two requirements. As already
mentioned, this property of the partition functions is the rationale for imposing the two
requirements. As we will discuss in the following, when the equivalence classes correspond
to the generators of the Grothendieck group of the characters of WLM(1, p), the induced
multiplication rules of the corresponding Grothendieck ring follow straightforwardly from the
fusion algebra, and χ̃ is an almost trivial bijection.

A natural objective is to determine a minimal algebra, that is, one of smallest possible
dimension, of equivalence classes compatible with the fusion algebra. A lower bound for this
dimension is the number of linearly independent characters appearing in the fusion algebra,
where we note that this number can be smaller that the number of irreducible characters.
Another interesting problem is to determine the minimal algebra corresponding to a ring over
the integers Z. The fusion algebra itself is such a ring with ∗ = ⊗̂ , so an upper bound on the
dimension is given, in this case, by the dimension of the fusion algebra. We hope to address
these questions elsewhere.

8.1. Grothendieck ring of WLM(1, p)

The Grothendieck ring of WLM(1, p) is obtained by elevating the character identities of
WLM(1, p) to identities between the corresponding fusion generators. From (7.3), we thus
impose the equivalence relations(

Rb
1

)
W ∼ (

Rp−b

2

)
W ∼ 2(2, b)W ⊕ 2(1, p − b)W , b ∈ Z1,p−1. (8.14)

In terms of equivalence classes, this means that |{Gm}| = 2p where

G[(κ, s)W ] = Gκ,s, G
[(
Rb

1

)
W

] = G
[(
Rp−b

2

)
W

] = 2G2,b + 2G1,p−b. (8.15)

It is easily verified that (8.5) is respected by the multiplication ∗ whose multiplication rules
are given by

Gκ,s ∗ Gκ ′,s ′ =
p−|p−s−s ′ |−1∑

j=|s−s ′ |+1, by 2

Gκ·κ ′,j +
s+s ′−p−1∑

β=ε(s+s ′−p−1), by 2

(2 − δβ,0)(Gκ·κ ′,p−β + G2·κ·κ ′,β),

(8.16)
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where Gκ,0 ≡ 0. These rules actually correspond to a transcription of the first fusion rule in
(2.4). As already indicated, the map χ̃ is simply given by the bijection

χ̃ [Gκ,s] = χ [(κ, s)W ] = χ̂κ,s (8.17)

between the set of Grothendieck generators and the set of irreducible characters. The two
index sets {m} and {i} can therefore be identified, and we have

gm
i = δm

i ⇒ fμ
i = hμ

i. (8.18)

8.2. Partition functions in WLM(1, p)

From the lattice description [6] of WLM(1, p), every indecomposable representation
appearing in (2.1) can be associated with a boundary condition. The corresponding characters
are in general not linearly independent. We can nevertheless talk about partition functions
arising when combining two such boundary conditions as in (8.11). Following the discussion
above, we thus have

Zμ,ν(q) =
∑
λ,i

Nμ,ν
λfλ

iχi(q) =
∑
m,n,i

hμ
mhν

nMm,n
iχi(q) (8.19)

implying that ∑
λ

Nμ,ν
λfλ

i =
∑
m,n

hμ
mhν

nMm,n
i, (8.20)

where the structure matrix fμ
m = hμ

m is the ((4p − 2) × 2p)-dimensional matrix defined by
(8.2) or equivalently by (8.3). The explicit form of this matrix follows from (8.17) and (7.3)
or equivalently from (8.15). Ordering the rows as in (3.1) and the columns as

G1,1,G2,1; . . . ;G1,s , G2,s; . . . ;G1,p,G2,p, (8.21)

the structure matrix is given by

fμ
m = hμ

m =

⎛
⎜⎜⎜⎜⎝

Ip−1 0 0
0 Ip−1 0
0 0 I2

2Cp−1 2Ip−1 0
2Ip−1 2Cp−1 0

⎞
⎟⎟⎟⎟⎠ . (8.22)

8.3. Relation between Verlinde formulas for WLM(1, p)

The generalized Verlinde formula derived in section 7.2 yields the multiplicities Nμ,ν
λ in

(8.19), whereas the multiplicities Mm,n
i , also in (8.19), are given by the generalized Verlinde

formulas for the Grothendieck ring appearing in [4, 9]. Here we demonstrate how the so-called
Moore–Penrose inverse of hμ

m allows us to isolate Mm,n
i from relation (8.20).

First, we recall that for every n × m matrix A, there is a unique matrix A† satisfying the
four Penrose equations (see [35, 36], for example):

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A, (8.23)

where A∗ denotes the conjugate transpose of A. The matrix A† is called the Moore–Penrose
inverse, or pseudoinverse for short, of A. Clearly, A† is an m × n matrix, and if A is
nonsingular, then A† = A−1. It also follows readily that AA† and A†A are projection matrices.
Furthermore, if A has a full column rank, then A∗A is invertible and A† = (A∗A)−1A∗

implying, in particular, that A†A = I .
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Now, the structure matrix (8.22) has full column rank so∑
μ

h† μ
m hμ

n = δm
n. (8.24)

It follows that

Mm,n
� =

∑
μ,ν,λ

h† μ
m h† ν

n Nμ,ν
λhλ

� =
∑
μ,ν,λ

f † μ
m f † ν

n Nμ,ν
λfλ

�, (8.25)

which expresses the output Mm,n
� of the generalized Verlinde formula for the Grothendieck

ring in terms of fusion data. Isolating Nμ,ν
λ, on the other hand, from (8.20) is not achieved by

application of the Moore–Penrose inverse of the structure matrix simply because this structure
matrix does not have full row rank so∑

i

fλ
if

† μ

i �= δλ
μ. (8.26)

9. Conclusion

We have described the graph fusion algebra of WLM(1, p). The corresponding fusion
matrices (adjacency matrices) are mutually commuting, but in general not diagonalizable.
Nevertheless, they can be simultaneously brought to Jordan form, albeit typically non-
canonical Jordan form, by a similarity transformation. The two fundamental fusion matrices
are simultaneously brought to Jordan canonical form by the similarity matrix Q. For every
fusion matrix N , we have provided a modified Q-matrix QN converting N to Jordan canonical
form. These Jordan canonical forms are given explicitly and consist of Jordan blocks of rank
1, 2 or 3. The various similarity transformations and Jordan forms can be expressed in terms
of modular data. This gives rise to a generalized Verlinde formula for the fusion matrices.
Its relation to the partition functions in the model is discussed in a general framework. By
application of a particular structure matrix and its Moore–Penrose inverse, this Verlinde
formula reduces to the Verlinde-like formula [4] for the associated Grothendieck ring.

We recall that fusion graphs have been instrumental in the classification of rational
conformal field theories on the cylinder and on the torus. It is our hope that the present work
will be a step toward extending these fundamental insights to the logarithmic conformal field
theories. First, though, one should extend our results to the general series of W-extended
logarithmic minimal models WLM(p, p′). In this direction, we have recently worked out the
corresponding graph fusion algebras and determined their spectral decompositions [37]. The
next objective is to determine the associated Verlinde-like formulas which we hope to address
elsewhere.

From section 8, we recall that the partition functions can be expressed in terms of a
ring of equivalence classes of fusion-algebra generators provided two simple requirements are
respected. As indicated following (8.13), in particular, there are many interesting problems
related to these fusion-algebra compatible rings. The determination of a minimal such ring or
the classification of similar rings over the integers are natural examples.
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Appendix A. On the polynomial fusion ring in section 2.2

A.1. Simplification of isomorphism

Here we prove the simplification (2.14) of the isomorphism (2.11). Recalling the notation

Pn(x) = (x2 − 4)U 3
n−1

(x

2

)
, Pn,n′(x, y) =

(
Tn

(x

2

)
− Tn′

(y

2

) )
Un−1

(x

2

)
Un′−1

(y

2

)
(A.1)

from [10], we consider

Un−1

(x

2

)
Un′−1

(y

2

)
≡

(
1 +

((x

2

)2
− 1

)
U 2

n−1

(x

2

))
Un−1

(x

2

)
Un′−1

(y

2

)
= T 2

n

(x

2

)
Un−1

(x

2

)
Un′−1

(y

2

)
≡ Un−1

(x

2

)
T 2

n′

(y

2

)
Un′−1

(y

2

)
= Un−1

(x

2

) (
1 +

((y

2

)2
− 1

)
U 2

n′−1

(y

2

) )
Un′−1

(y

2

)
. (A.2)

The first equivalence is modulo Pn(x), the second equivalence is modulo Pn,n′(x, y) (applied
twice), while the two equalities follow from the identity

T 2
n (z) = 1 + (z2 − 1)U 2

n−1(z). (A.3)

As an immediate consequence, we see that

0 ≡ Un−1

(x

2

) ((y

2

)2
− 1

)
U 3

n′−1

(y

2

)
(mod Pn(x), Pn,n′(x, y)). (A.4)

For n = 1, in which case Un−1
(

x
2

)
is a non-vanishing constant, this implies that

Pn′(y) ≡ 0 (mod P1(x), P1,n′(x, y)). (A.5)

A.2. Quotient polynomial ring conditions

Here we complete the verification of the quotient polynomial ring conditions in (2.11). Since

(Jb − βbI), (Jb − βbI)2 �= 0, (Jb − βbI)3 = 0, b ∈ Z1,p−1, (A.6)

where Jb = Jβb,3 as in (5.16), it follows from the Jordan canonical form JY of Y that
the minimal polynomial of Y is indeed given by Pp(Y ) in (3.9). It also follows that the
characteristic polynomial of Y is given as in (3.9). Due to (3.7) and the commutativity of
X and Y, the explicit verification of (2.11) is thus completed once we have established that
P̃1,p(X, Y ) = 0 which is equivalent to

JXUp−1

(
JY

2

)
= Tp

(
JY

2

)
Up−1

(
JY

2

)
. (A.7)

Using (5.17) and (B.5), the left-hand side reads

JXUp−1

(
JY

2

)
= diag

(
Up−1(α0);Up−1(α1),−Up−1

(
J1

2

)
; . . . ;

(−1)b−1Up−1(αb), (−1)bUp−1

(
Jb

2

)
; . . . ;

(−1)p−2Up−1(αp−1), (−1)p−1Up−1

(
Jp−1

2

)
; (−1)pUp−1(αp)

)

= diag

(
p; 0, (−1)1Up−1

(
J1

2

)
; . . . ; 0, (−1)p−1Up−1

(
Jp−1

2

)
;−p

)
. (A.8)
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Likewise, the right-hand side of (A.7) reads

Tp

(
JY

2

)
Up−1

(
JY

2

)
= diag

(
p; 0, Tp

(
J1

2

)
Up−1

(
J1

2

)
; . . . ;

0, Tp

(
Jp−1

2

)
Up−1

(
Jp−1

2

)
;−p

)
. (A.9)

Using

f

(
Jb

2

)
=

⎛
⎜⎝

f (αb)
1
2f ′(αb)

1
8f ′′(αb)

0 f (αb)
1
2f ′(αb)

0 0 f (αb)

⎞
⎟⎠ (A.10)

for polynomial f , we find

Tp

(
Jb

2

)
Up−1

(
Jb

2

)
=

⎛
⎜⎝

(−1)b 0 1
8T ′′

p (αb)

0 (−1)b 0

0 0 (−1)b

⎞
⎟⎠

⎛
⎜⎝

0 1
2U ′

p−1(αb)
1
8U ′′

p−1(αb)

0 0 1
2U ′

p−1(αb)

0 0 0

⎞
⎟⎠

= (−1)bUp−1

(
Jb

2

)
(A.11)

and thus recover (A.8). This completes the explicit verification of P̃1,p(X, Y ) = 0 and hence
of the isomorphism (2.11) already established, using structural and algebraic arguments,
in [10].

Appendix B. Properties of the functions fk(x)

Here we derive and list some useful properties of the functions fk(x) defined in (5.8).

B.1. Recursion relations and special values

For p > 2, the functions satisfy recursive relations allowing us to express xfk(x), for
k ∈ Z1,2p−2, as

f2(x) = xf1(x)

fk−1(x) + fk+1(x) = xfk(x), k ∈ Z2,p−1

fp+1(x) = xfp(x) (B.1)

2fp(x) + fp+2(x) = xfp+1(x)

fk−1(x) + fk+1(x) = xfk(x), k ∈ Zp+2,2p−2.

It follows that

f ′
2(x) = xf ′

1(x) + f1(x), f ′′
2 (x) = xf ′′

1 (x) + 2f ′
1(x)

f ′
k−1(x) + f ′

k+1(x) = xf ′
k(x) + fk(x), f ′′

k−1(x) + f ′′
k+1(x) = xf ′′

k (x) + 2f ′
k(x)

f ′
p+1(x) = xf ′

p(x) + fp(x), f ′′
p+1(x) = xf ′′

p (x) + 2f ′
p(x)

2f ′
p(x) + f ′

p+2(x) = xf ′
p+1(x) + fp+1(x), 2f ′′

p (x) + f ′′
p+2(x) = xf ′′

p+1(x) + 2f ′
p+1(x)

f ′
k−1(x) + f ′

k+1(x) = xf ′
k(x) + fk(x), f ′′

k−1(x) + f ′′
k+1(x) = xf ′′

k (x) + 2f ′
k(x)

(B.2)
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with the conditions on k adopted from (B.1). It is noted that we have not included any relations
involving xf2p−1(x) for general x. Instead, we focus on evaluations at x = βj for j ∈ Z0,p,
where it is recalled that βj = 2αj with αj defined in (3.8). We thus find that

2(−1)ifp(βj ) + f2p−2(βj ) = βjf2p−1(βj ), j ∈ Z1,p−1 or i = j ∈ {0, p}
2(−1)bf ′

p(βb) + f ′
2p−2(βb) = βbf

′
2p−1(βb) + f2p−1(βb), b ∈ Z1,p−1

2(−1)bf ′′
p (βb) + f ′′

2p−2(βb) = βbf
′′
2p−1(βb) + 2f ′

2p−1(βb), b ∈ Z1,p−1.

(B.3)

In establishing these relations, we use that

xf2p−1(x) − f2p−2(x) = 2Tp

(x

2

)
Up−1

(x

2

)
(B.4)

and that

Up−1(αb) = 1

p
T ′

p(αb) = 0, Tp(αj ) = cos(pθj ) = (−1)j (B.5)

recalling from (3.8) that θj = jπ/p.
At special values, the evaluation of the functions fk and their derivatives can be simplified.

Some of these results are collected here for simple reference. Additional expressions are found
in appendix B.2. We have

fs(±2) = s(±1)s−1, fp+b′(±2) = 2p(±1)p+b′−1, fp(βb) = fp+b′(βb) = 0 (B.6)

and

fs(0) = 0, f ′
s (0) = j (−1)j−1, f ′′

s (0) = 0, s = 2j

fs(0) = (−1)j , f ′
s (0) = 0, f ′′

s (0) = j (j + 1)(−1)j−1, s = 2j + 1
(B.7)

and for p odd

fp+b′(0) = 0, f ′
p+b′(0) = b′(−1)

p+1
2 +i , f ′′

p+b′(0) = 0, b′ = 2i − 1

fp+b′(0) = 2(−1)
p−1

2 +i , f ′
p+b′(0) = 0, f ′′

p+b′(0) = p2+4i2−1
2 (−1)

p+1
2 +i , b′ = 2i

(B.8)

and for p even

fp+b′(0) = 0, f ′
p+b′(0) = 0, f ′′

p+b′(0) = b′p(−1)
p

2 +i , b′ = 2i − 1

fp+b′(0) = 0, f ′
p+b′(0) = p(−1)

p

2 +i−1, f ′′
p+b′(0) = 0, b′ = 2i.

(B.9)

B.2. Trigonometric expressions

The Chebyshev polynomials and their derivatives appearing in Q are evaluated at trigonometric
values:

Un−1(cos θ) = sin nθ

sin θ
, Un−1(±1) = n(±1)n−1. (B.10)

We thus have

fs(βb′) = sin sθb′

sin θb′
, f ′

s (βb′) = sin sθb′ cos θb′ − s cos sθb′ sin θb′

2 sin3 θb′
(B.11)

f ′′
s (βb′) = sin sθb′(1 + 2 cos2 θb′) − 3

2 s cos sθb′ sin 2θb′ − s2 sin sθb′ sin2 θb′

4 sin5 θb′
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and

fp+b(βb′) = 0, f ′
p+b(βb′) = (−1)b

′−1p cos bθb′

sin2 θb′
(B.12)

f ′′
p+b(βb′) = (−1)b

′−1p
(
b sin bθb′ sin θb′ + 3

2 cos bθb′ cos θb′
)

sin4 θb′
.

B.3. Classification of zeros

For k ∈ Z1,2, we have

f ′
1(x) = f ′′

1 (x) = 0, f ′
2(x) = 1, f ′′

2 (x) = 0 (B.13)

while for k = s ∈ Z3,p, we have

f ′
s (βb) = 0 ⇔ αb = 0, s odd ⇔ b = p

2
, s = 2j + 1, j ∈ Z1,

p

2 −1 (B.14)

and

f ′′
s (βb) = 0 ⇔ αb = 0, s even ⇔ b = p

2
, s = 2j, j ∈ Z2,

p

2
. (B.15)

For k = p + b′ ∈ Zp+1,2p−1, we have

f ′
p+b′(βb) = T ′

b′(αb)Up−1(αb) + Tb′(αb)U
′
p−1(αb) = cos

bb′π
p

U ′
p−1(αb). (B.16)

From (B.14), it then follows that

f ′
p+b′(βb) = 0 ⇔ cos

bb′π
p

= 0 ⇔ 2bb′ = mp, m odd. (B.17)

Since m is odd, the last identity implies that 2(b, p), where (b, p) denotes the greatest common
divisor of b and p, is a divisor of p and hence that b

(b,p)
is odd. From

b′ b

(b, p)
2(b, p) = m

p

2(b, p)
2(b, p),

( b

(b, p)
,

p

2(b, p)

)
= 1, (B.18)

it then follows that b′ is an odd multiple of p

2(b,p)
. Since b′ ∈ Z1,p−1, we thus have

b′ = (2j − 1)p

2(b, p)
, j ∈ Z1,(b,p),

p

2(b, p)
∈ Z1,

p

2
. (B.19)

That is, for given b, f ′
p+b′(βb) = 0 if and only if b′ is of the form (B.19) and p

2(b,p)
∈ Z1,

p

2
.

Due to the symmetric conditions b, b′ ∈ Z1,p−1 and cos bb′π
p

= 0, we likewise have that, for
given b′,

f ′
p+b′(βb) = 0 ⇔ b = (2j − 1)p

2(b′, p)
, j ∈ Z1,(b′,p),

p

2(b′, p)
∈ Z1,

p

2
. (B.20)

Finally, still for k = p + b′ ∈ Zp+1,2p−1, we have

f ′′
p+b′(βb) = T ′

b′(αb)U
′
p−1(αb) + 1

2Tb′(αb)U
′′
p−1(αb) (B.21)

and

f ′′
p+b′(βb) = 0 ⇔ αb = 0, p + b′ even ⇔ b = p

2
, b′ = 2j, j ∈ Z1,

p

2 −1. (B.22)

We observe that f ′
k(βb) = f ′′

k (β) = 0 if and only if k = 1.
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